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Abstract
Progesterone has been associated with the development of gestational diabetes (GD) due to

the enhancement of insulin resistance. As b-cell apoptosis participates in type 1 and type 2

diabetes pathophysiology, we proposed the hypothesis that progesterone might

contribute to the development of GD through a mechanism that also involves b-cell death. To

address this question, RINm5F insulin-producing cells were incubated with progesterone

(25–100 mM), in the presence or absence of a-tocopherol (40 mM). After 24 or 48 h, membrane

integrity and DNA fragmentation were analyzed by flow cytometry. Caspase activity was used

to identify the mode of cell death. The involvement of endoplasmic reticulum stress in the

action of progesterone was investigated by western blotting. Oxidative stress was measured

by 2’,7’-dichlorofluorescein diacetate (DCFDA) oxidation. Isolated rat islets were used in

similar experiments in order to confirm the effect of progesterone in primary b-cells.

Incubation of RINm5F cells with progesterone increased the number of cells with loss of

membrane integrity and DNA fragmentation. Progesterone induced generation of reactive

species. Pre-incubation with a-tocopherol attenuated progesterone-induced apoptosis.

Western blot analyses revealed increased expression of CREB2 and CHOP in progesterone-

treated cells. Progesterone caused apoptotic death of rat islet cells and enhanced generation

of reactive species. Our results show that progesterone can be toxic to pancreatic b-cells

through an oxidative-stress-dependent mechanism that induces apoptosis. This effect may

contribute to the development of GD during pregnancy, particularly under conditions that

require administration of pharmacological doses of this hormone.
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Introduction
The steroid hormones progesterone and the oestrogens

have been shown to be involved in b-cell physiology,

exerting direct effects on insulin secretion (for review see

Lenzen & Bailey (1984) and Straub et al. (2001)) and islet
cell proliferation (Kawai & Kishi 1999, Nieuwenhuizen

et al. 1999, Le May et al. 2006) through binding to their

specific receptors (Pasanen et al. 1997, Le May et al.

2006). In addition, Picard et al. (2002) suggested that
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the hormonal particularities of pregnancy, and more

specifically progesterone, might contribute to the poor

adaptation of insulin secretion (Straub et al. 2001) and

action to the increased requirements during pregnancy.

In the pregnancy scenario, the diabetogenic effect of

progesterone has been mostly explained by the enhance-

ment of insulin resistance (Butte 2000), particularly in

skeletal muscle and adipose tissue, through a reduction in

glucose transporter 4 (GLUT4 (SLC2A4)) expression

(Sugaya et al. 2000). However, considering that apoptosis

is involved in the pathophysiology of type 1 and 2 diabetes

and also contributes to the involution of the b-cell mass in

the postpartum phase (Scaglia et al. 1995), we first proposed

the hypothesis that progesterone might be involved in

b-cell death, also contribute to the development of

gestational diabetes (GD). Both progesterone’s diabeto-

genic effect and its potential to induce b-cell death require

attention with the increasing pharmacological use of

progestagens throughout pregnancy for prevention of

recurrent preterm delivery (Sanchez-Ramos et al. 2005,

Dodd et al. 2008, Jayasooriva & Lamont 2009), which has

been correlated to the enhanced incidence of GD

(Rebarber et al. 2007).

Little is known about the possible mechanisms by

which progesterone exerts its effects on b-cells; however,

studies have shown that this hormone is able to modulate

the generation of reactive oxygen species (ROS) and

oxidative stress in different cell types (Nguyen & Syed

2011, Toyoda et al. 2011). Thus, as the pancreatic b-cells

present very low activities of antioxidant enzymes (Tiedge

et al. 1997) and it has been observed that the over-

expression of these enzymes protects these cells against

diabetogenic insults (Lortz et al. 2000, Azevedo-Martins

et al. 2003, Gurgul et al. 2004), we considered that

progesterone might act through an oxidative-stress-

dependent mechanism that has been recognised as a

stimulus for endoplasmic reticulum (ER) stress and for the

unfolded protein response (UPR) (Cao & Kaufman 2012).

In contrast to the effects of progesterone, data from

human and animal studies indicate that 17b-estradiol

(estradiol) prevents a decrease in insulin production in

the diabetic state (Le May et al. 2006). Also, estradiol, at

pharmacological concentrations, protects human pan-

creatic islets from apoptosis induced by proinflammatory

cytokines in vitro (Contreras et al. 2002). This information

led us to consider that an antidiabetic action of estradiol

might be due, at the least in part, to prevention of b-cell

apoptosis. Therefore we also evaluated the effect of

oestriol, the major oestrogen produced during pregnancy,

on progesterone-induced cell death.
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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We report herein that progesterone, at pharmacological

concentrations, as used for preterm delivery prevention,

induced apoptosis of RINm5F insulin-producing cells

and rat islet cells, which could be almost abolished by

pre-incubation with a-tocopherol. Cell death induced by

progesterone was enhanced by oestriol, though this

oestrogen per se had only little effect. In RINm5F insulin-

producing cells, the ER stress-related proteins CCAAT/

enhancer-binding protein homologous protein (CHOP)

(DDIT3) and CREB2 (CRTC2) were differentially expressed

followingexposure toprogesterone, indicating thatERstress

leading to an accumulation of unfolded/misfolded proteins

may contribute to the observed effects.
Materials and methods

Materials

RPMI-1640 medium, HEPES, penicillin and streptomycin

were purchased from Invitrogen. Propidium iodide (PI) was

purchased from ICN Biomedicals (Costa Mesa, CA, USA),

sodium citrate from Merck and sodium bicarbonate from

Labsynth Products (Diadema, SP, Brazil). The antibodies

used were as follows: anti-CREB-2 and anti-CHOP (GADD

153) purchased from Santa Cruz Biotechnology, Inc.

Thapsigargin was from Tocris (Bristol, UK). The ECL

Western Blotting Analysis System kit was from Amersham

Biosciences UK Limited. All cell culture plastic material was

from Corning (Corning, NY, USA). Progesterone, oestriol

and a-tocopherol as well as 2’,7’-dichlorofluorescein

diacetate (DCFDA) were from Sigma–Aldrich.
Cell culture conditions and islet isolation

RINm5F insulin-producing cells were cultured in RPMI-

1640 medium, containing 11.1 mM glucose and 10% (v/v)

FCS. The medium was supplemented with 2.0 mM

glutamine, 20 mM HEPES, 100 mg/ml streptomycin,

100 IU/ml penicillin and 24 mM sodium bicarbonate.

The cells were maintained in an incubator (Forma,

ThermoScientific, Asheville, NC, USA) in a humidified

atmosphere at 37 8C and 5% CO2.

Pancreatic islets were isolated from 3-month-old

Wistar rats as described previously (Lenzen et al. 1983).

The islets were washed and handpicked under a stereo-

microscope. After an overnight culture, the islets were

distributed into three batches and cultured at 37 8C in

RPMI-1640 medium containing 10 mM glucose and 10%

FCS with 0, 25 or 100 mM progesterone for 48 h and were

used in the subsequent experiments. The islets for caspase
Published by Bioscientifica Ltd.

http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-13-0202


Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y

Research V A NUNES and others Progesterone induces RINm5F
cell apoptosis

221 :2 275
3 activation and DCFDA oxidation determination were

cultured on ECM-coated dishes for 10–14 days until

formation of monolayer, and thereafter incubated with

the test compounds then analysed.
Cell treatments

The cells were seeded the day before treatments into six-

well plates for flow cytometric analyses (8!105 cells/well).

Alternatively, pooled rat islets or rat islet-dispersed cells

were used. Different concentrations of progesterone

and/or oestriol were tested for 24 or 48 h. In order to

evaluate the effect of a-tocopherol, the cells were pre-

incubated for 2 h with this vitamin at a final concen-

tration of 40 mM, before addition of progesterone. The

hormones, a-tocopherol and thapsigargin were dissolved

in absolute ethanol. The final concentration of ethanol in

the medium did not exceed 0.5%. Staurosporine was

diluted in DMSO. Ethanol and DMSO, used as vehicles, did

not affect the experimental results.
Cell proliferation assay

The effect of progesterone on cell proliferation was

evaluated by using the BrdU In situ Detection kit (BD

Bioscience, Heidelberg, Germany) according to the man-

ufacturer’s protocol. Briefly, the cells were seeded onto

Nunc LabTek II CC2 chamber slides (Fisher Scientific,

Schwerte, Germany), treated with test compounds and

fixed overnight with fixation buffer. After fixation, the

cells were washed three times with PBS for 5 min, followed

by BrdU staining. Slides were thereafter mounted with

Mowiol (Merck) plus 0.6% Dabco (St Louis, MO, USA).

Images were captured and analysed using a CellR/Olympus

BX61 inverted microscope system (Olympus, Hamburg,

Germany). BrdU-negativity and BrdU-positivity were

determined for 200–500 cells in each experiment. Four

independent experiments were carried out. Data are

expressed as the percentage of BrdU-positive cells for

each treatment condition.
Cell membrane integrity assay

The cells were centrifuged at 400 g for 5 min at 4 8C and

the pellet obtained was suspended in 500 ml PBS. There-

after, 50 ml PI solution (50 mg/ml in PBS) were added and

the cells were analysed using a FACScalibur flow cytometer

(Becton Dickinson, San Juan, CA, USA) (Nicoletti et al.

1991). Fluorescence was measured using the FL2 channel

(orange–red fluorescence 585/42 nm). A total of 10 000
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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events were analysed per experiment. The cells with PI

fluorescence were evaluated by using the Cell Quest

software (Becton Dickinson).

For cell death evaluation of islets, after 48 h

incubation with progesterone, rat pancreatic islets were

disrupted by tryptic digestion and gentle pipetting. Living,

apoptotic and dead cells were identified using the Guava

ViaCount assay (Millipore, Billerica, MA, USA) based

on the cytoplasmic and nuclear staining by two dyes.

A membrane-permeant dye stained all nucleated cells,

whereas a membrane-impermeant dye stained only

damaged cells, thus indicating apoptotic and dying cells.

Briefly, the cell suspensions were incubated with the

ViaCount reagent for 5 min at room temperature. Data

acquisition was carried out using a Guava EasyCyte

flow cytometer (Millipore) and data analysis using the

ViaCount software module.
DNA fragmentation assay

Apoptotic cells were evaluated by DNA fragmentation and

loss of nuclear DNA content assays using the fluorochrome

PI (Nicoletti et al. 1991). After trypsinisation, the cells were

collected and incubated with a solution containing 0.1%

Triton X-100. After incubation, the cells were centrifuged at

400 g for 5 min at 4 8C. The pellet was gently added to 300 ml

hypotonic solution, containing 50 mg/ml PI, 0.1% sodium

citrateand 0.1%TritonX-100.The cells were then incubated

overnight at 4 8C and analysed by flow cytometry.

Islet cell apoptosis detection was carried out by using

the Cell Death Detection ELISA PLUS kit (Roche Diag-

nostics), according to manufacturer’s instructions, which

is based on the measurement of the amount of histone-

associated DNA fragments (mono- and oligonucleo-

somes). After cultivation of islets for 48 h in the presence

of 0, 25 or 100 mM progesterone, batches of 80 islets were

lysed in 100 ml lysis buffer, and the cytosolic and nuclear

fractions were separated by centrifugation at 200 g for

10 min. The mean absorbance at 405 nm of each sample

was normalised using the DNA content in the nuclear

fraction, using a positive control available in the kit.

Experiments were carried out three times in duplicates.
Determination of oxidative and nitrosative

species generation

Cells (2!104) were seeded onto 96-well black plates and

pre-incubated with 10 mM dichlorofluorescein diacetate

(DCF-DA) for 30 min at 37 8C. The medium containing the

reagent was discarded, and fresh medium with different
Published by Bioscientifica Ltd.
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concentrations of progesterone was added. The cells were

cultured for 6, 12 and 24 h. After incubation, the plates

were analysed at lexcZ480 and lemZ520 nm using the

fluorescence reader Victor2 1420 Multilabel Counter

(Perkin Elmer, Wiesbaden, Germany). Data were

normalised to the number of viable cells and expressed

as arbitrary units of DCF fluorescence.

For determination of oxidative stress by DCF fluor-

escence, rat islet cells were seeded onto ECM-coated dishes

and pre-incubated wit 10 mM DCFDDA for 60 min at 37 8C,

followed by treatment with 25 or 100 mM progesterone for

48 h. Thereafter the cells were trypsinised and analysed

using a CyFlow ML cytometer (Exc. 488 nm/Em. 520 nm)

(Partec, Münster, Germany). A total of 10 000 events were

counted. Data were analysed using FlowJo software (Tree

Star, Ashland, OR, USA).

The superoxide content in islets was evaluated by flow

cytometry (Guava EasyCyte, EMD Millipore Corporation,

Billerica, MA, USA) through its reaction with hydroethidine

(DHE), which generates the fluorescent product hydroxyethi-

dium (Molecular Probes, Life Technologies, Carlabad, CA,

USA) (Zhao et al. 2005). Batches of 30 islets were preincubated

for 30 min at 37 8C in Krebs–Henseleit solution (KH), pH 7.4

containing 10 mM glucose. After this period, DHE was added

at a final concentration of 50 mM. The samples, protected

from light, were then incubated for an additional 20 min at

room temperature. The islets were disrupted by trypsin and

gentle pipetting and resuspended in 200 ml RPMI-1640

medium. A set of 5000 events was evaluated per sample,

and the yellow fluorescence was measured using an

excitation wavelength of 488 nm. The emission signal was

acquired with the yellow filter (583G26 nm). The experi-

ments were done in triplicates on three different days.
Caspase activity determination

Caspase activity in cell lysates was determined by

fluorimetric assay using the substrate Abz-DEVDGVQ-

EDDnp, as previously described by Nunes et al. (2005).

Substrate (20 mM) hydrolysis was determined in 25 mM

HEPES buffer, pH 7.4, containing 2.0 mM EDTA, 10 mM

dithiothreitol, 10% sucrose, 0.1% 3-((3-cholamido-

propyl)dimethylammonio)-1-propanesulfonate, 10 mg/ml

pepstatin A, 10 mg/ml leupeptin and 100 mM phenyl-

methylsulphonyl fluoride (PMSF) (caspase buffer), at

lexcZ320 and lemZ420 nm and for 3 h at 37 8C in a

microtiter plate Synergy Biotek (BioTek Instruments, Inc

Winooski, VT, USA). Enzyme activity was expressed as

arbitrary units of fluorescence (AUF) per microgram of

protein. All determinations were carried out in triplicates
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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in, at least, three individual experiments. Caspase activity

was confirmed by incubating cell lysates with the caspase

inhibitor Z-VAD-fmk (0.1 or 1 mM). Z-VAD-fmk efficiency

was tested using purified recombinant caspase 3, as

described by Nunes et al. (2003, 2005).
Discriminating specific caspase activity

Specific activities of caspases 3, 9 and 12 were determined

after 24 h of incubation with various concentrations

of progesterone, using red caspase 3 and green caspases 9

and 12 staining kits (PromoCell, Heidelberg, Germany)

according to the instruction manual. After staining and

washing, cell suspensions and dispersed islet cells were

immediately subjected to analysis using a CyFlow ML

cytometer (Partec). A total of 20 000 events were acquired.

The number of cells with caspase activity was normalised

to the number for untreated cells. Data were analysed by

FlowJo software (Tree Star). A cytokine mixture consisting

of 60 U/ml IL1b, 185 U/ml TNFa and 14 U/ml IFNg

(PromoCell) was used as positive control.
Western blotting

For western blotting experiments, the cells were lysed with

25 mM HEPES, pH 7.4, containing 0.5% Triton X-100 and a

cocktail of protease inhibitors (100 mM PMSF, 10 mg/ml

leupeptin, 10 mg/ml pepstatin, 5 mM EDTA). Homogenates

were centrifuged at 12 000 g for 10 min and the super-

natants were collected. The protein concentration was

determined according to the method described by Bradford

(1976), using BSA as the standard. Aliquots with 50 mg

protein were freeze-dried, dissolved in 15 ml of sample

buffer (300 mM Tris, pH 7.2, 2% SDS, 20% glycerol, 1.2%

bromophenol blue and 3% b-mercaptoethanol) and boiled

for 7 min. Extracted proteins were separated by 12% PAGE

and electrotransferred onto nitrocellulose membranes (GE

Healthcare, Little Chalfont, Buckinghamshire, UK) for 2 h

at 0.35 A at 4 8C. The membranes were blocked with 5%

non-fat milk in 10 mM Tris buffer, pH 7.5, 150 mM NaCl

and 0.1% Tween 20 (TBS-T) for 2 h and subsequently

incubated with MABs anti-CREB-2 (1:200) and anti-CHOP

(1:200). After an overnight incubation with the primary

antibodies at 4 8C, the membranes were washed three times

with TBS-T for 10 min. The HRP-conjugated anti-goat

secondary antibody (anti IgG-HRP) was incubated at

1:1500 for 1 h at room temperature. b-tubulin was used as

a loading and transfer control in all experiments. Bound

proteins were visualised using a commercially available

chemiluminescence kit (ECL, GE Healthcare) according to
Published by Bioscientifica Ltd.
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the manufacturer’s instructions. The membranes were then

exposed to autoradiography films (Kodak), which were

developed and scanned. Densitometric analyses were

carried out using the freeware program CP Atlas 2.0

(lazarsoftware.com). Western blots representative of three

independent experiments are shown.
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Statistical analysis

Results are expressed as meanGS.E.M. Statistical analyses

were carried out using one-way ANOVA followed by

Tukey’s test for multiple comparisons using the Prism

analysis program (Graphpad, San Diego, CA, USA).
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Results

Effects of progesterone on proliferation of

insulin-producing cells

Incubation of RINm5F insulin-producing cells for 24 h

with progesterone did not affect cell proliferation signi-

ficantly (Fig. 1A). After a 48 h incubation, a significant

decrease in proliferation of insulin-producing cells

was observed in the case of a high concentration of

100 mM, which is a concentration in the pharmacological

range (Fig. 1A).
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Figure 1

Concentration-dependent toxic effects of progesterone in RINm5F insulin-

producing cells after 24 or 48 h of incubation. After incubation with

progesterone, (A) cell proliferation; (B) cell membrane integrity and

(C) DNA fragmentation were analysed. Data are presented as meanGS.E.M.

of four to five experiments in triplicates. Differences were analysed for

statistical significance by ANOVA followed by Tukey’s test; *P!0.05

compared with untreated cells, ***P!0.01, P!0.05 compared with the

same treatment for 24 h. STP, staurosporine.
Effects of progesterone on death of insulin-producing

and rat islets cells

Incubation of RINm5F cells with progesterone resulted

also in a loss of cell membrane integrity at concentrations

ranging from 50 to 100 mM as shown in Fig. 1B. The effect

was more pronounced after 48 h than after 24 h of

incubation. About 60% of cells lost membrane integrity

after 24 h and 90% after 48 h of incubation with 100 mM

progesterone. Staurosporine was used as a positive control

for apoptotic cell death (Fig. 1B).

Progesterone also induced significant DNA fragmenta-

tion at a concentration range of 25–100 mM in RINm5F

cells (Fig. 1C). This effect was significantly stronger after

48 h comparing with after 24 h of incubation with the

hormone (Fig. 1C).

In addition to our experiments using RINm5F cells

as a model cell line for b-cells, we also carried out key

experiments with islet cells. In general, rat islet cells

presented a similar response to progesterone treatment.

As shown in Table 1, 100 mM progesterone induced

apoptotic death of dispersed islet cells after 48 h incu-

bation. This effect was specific because the rate of
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0202 Printed in Great Britain
nonapoptotic cell death was not affected by progesterone

treatment (Table 1). Progesterone at a final concentration of

25 mM did not cause a significant induction of cell death.

The apoptotic nature of cell death was confirmed by

detection of DNA internucleosomal cleavage in islet cells

incubated with 100 mM progesterone for 48 h (Fig. 2A). The

amount of mono- and oligonucleosomes was almost 20-

fold higher in this group in comparison with the control

group (Fig. 2A). Moreover, the measurement of caspase 3
Published by Bioscientifica Ltd.
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Table 1 Effect of progesterone on rat islet cell death. P!0.05.

Progesterone

(mM) Viable Apoptotic

Dead

(non-apoptotic)

0 92.2G1.4 4.3G1.0 3.5G0.5
25 90.7G1.2 4.6G0.9 4.7G0.5
100 74.4G4.9* 19.0G3.7* 6.6G1.4
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activity revealed a significant induction of this pathway by

100 mM progesterone after a 48 h incubation (Fig. 2B).
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Effect of oestriol on viability of RINm5F b-cells

Oestriol was much less toxic to RINm5F cells than

progesterone. After incubation for 24, as well as for 48 h,

oestriol caused a significant reduction in cell viability

(25%) only at the highest concentration (100 mM)

(Fig. 3A). Incubation of cells with 25 mM oestriol and

100 mM progesterone strongly enhanced the loss of cell

membrane integrity at both time points.

Oestriol (5–50 mM) did not cause significant DNA

fragmentation after 24 or 48 h of incubation (Fig. 3B).

Only the highest concentration of 100 mM caused a slight

significant increase in the number of cells with fragmen-

ted DNA (Fig. 3B). The toxic effect of progesterone

(100 mM) was significantly potentiated by oestriol

(25 mM) (Fig. 3B).
B 250

200

150

100

50

0
0 25 100

Progesterone (µM)

C
as

pa
se

3 
ac

tiv
ity

(p
er

ce
nt

ag
e 

of
 v

al
ue

 fo
r 

un
tr

ea
te

d 
ce

lls
)

*

Figure 2

Effects of progesterone on islet cell apoptosis. After 48 h of treatment with

progesterone, batches of 80 rat islets were (A) lysed and the presence of

mono- and oligonucleosomes in the cytosolic fraction was evaluated by using

the Cell Death Detection ELISA PLUS kit; (B) trypsinised, and incubated with a

staining kit and caspase 3 activation was measured by flow cytometry. (A) The

mean absorbance of each sample was normalised to that of the positive

control provided in the kit and corrected for differences in islet DNA content

of the nuclear fraction. (B) Data were normalised to the value for untreated

cells. Data are presented as meanGS.E.M. of four experiments made in

duplicate. Differences were analysed for statistical significance by ANOVA

followed by Tukey’s test; *P!0.05 vs untreated.
Looking for the mechanisms by which progesterone

induced cell death

We evaluated the effect of progesterone in promoting

caspase activation in RINm5F cells. Treatment of cells with

progesterone resulted in a concentration-dependent

increase in caspase activity as an indicator of apoptotic

cell death (Fig. 4). Progesterone increased the activities

of caspases 9, 12 and 3 (Fig. 5).

In order to investigate the effect of progesterone on

generation of ROS, we used a fluorescence assay based

on DCFDA oxidation. Significant production of ROS was

observed after 12 h of incubation with 100 mM progesterone

and after 24 h with 50 mM (Fig. 6). Similar effects were

observed in dispersed rat islet cells, showing a significant

induction of ROS formation after a 48 h incubation with

100 mM progesterone (Fig. 7A). We also evaluated the effect

of progesterone on formation of superoxide radicals

in disrupted islets cells of rat. Progesterone at a final

concentration of 100 mM caused a significant enhancement

of superoxide radical production, which was not evident

with 25 mM progesterone (Fig. 7B).
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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In the following experiments, we investigated the

potential protective effect of the dietary antioxidant

a-tocopherol (40 mM) against progesterone toxicity. This

treatment reversed cell membrane integrity loss (Fig. 8A)

and DNA fragmentation (Fig. 8B) of RINm5F cells. At

concentrations of progesterone up to 50 mM, the toxic

effect was abolished and, even at the highest progesterone

concentration of 100 mM, a-tocopherol (40 mM) strongly

counteracted the toxic effect of progesterone after both

24 and 48 h of incubation.

To investigate the participation of proteins and

transcription factors involved in the UPR on pro-

gesterone-induced cell death, we evaluated the expression,
Published by Bioscientifica Ltd.
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by western blotting, of CHOP and cAMP-response

element-binding protein 2 (CREB2, also called ATF4).

Thapsigargin, an inhibitor of sarcoplasmic/ER Ca2C

ATPases (SERCAs), which pumps Ca2C into the ER

(Nakagawa et al. 2000), was used as a positive control of

ER stress, at concentrations that were able to induce cell

death as assessed by flow cytometry (data not shown).

Our findings showed a concentration-dependent

increase in the expression of CHOP and CREB2 after

incubation of cells with progesterone (Fig. 9). Densito-

metric analyses revealed that CHOP expression (Fig. 9A)

was sixfold and tenfold higher after incubation with 25

and 100 mM progesterone, respectively, in comparison

with untreated cells, when normalised to b-tubulin

expression (Fig. 9A). These effects were observed at both

time points (24 and 48 h) and expression was increased

even more after the longer incubation period.
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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The CREB2 protein level in cells incubated with 25

or 100 mM progesterone was 2.7 times higher than that for

untreated cells (Fig. 9B). After 48 h of incubation with the

same progesterone concentrations, an increase in CREB2

expression of 1.8- and 1.2-fold was observed, in compari-

son with treatment for 24 h. Oestriol alone did not affect

CREB2 expression. However, in combination with 100 mM

progesterone for 48 h, the amount of this protein was

increased compared with cells treated with progesterone

alone (Fig. 9B).
Discussion

Although the diabetogenic potency of progesterone is

well-known (for review, see Lenzen & Bailey (1984) and

Butte (2000)), the present study provides new insights into

the mechanisms of its direct action on insulin-producing

cells under conditions that require pharmacological use of

this hormone, such as for prevention of recurrent preterm

delivery. Accordingly, it seems especially relevant to

evaluate the potential effects of progesterone-based

medications on mother and foetus. Considering the

diabetogenic effect of progesterone, Rebarber et al. (2007)

reported that the use of 17a-hydroxyprogesterone capro-

ate (17P), in the micromolar range, by women having a

history of preterm delivery, increased the risk of develop-

ment of GD. Another study involving women of hispanic

descent with no previous history of diabetes showed that

the use of an injectable progestagen-based contraceptive

for long periods of time was associated with an increased
Published by Bioscientifica Ltd.
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Concentration-dependent effects of progesterone on reactive oxygen

species (ROS) generation in RINm5F insulin-producing cells after 6, 12

or 24 h of incubation as measured by the increase in DCF fluorescence.

Data are presented as meanGS.E.M. of three experiments in triplicates.

Differences were analysed for statistical significance by ANOVA followed
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risk of developing GD (Xiang et al. 2006). Though another

group did not find a correlation between progesterone use

and an increasing risk of GD (Gyamfi et al. 2009), we have

demonstrated in this study a direct effect of this hormone

on the pancreatic b-cell line, RINm5F, and on rat islet

cells causing apoptotic cell death, at concentrations

ranging from 50 to 100 mM which correspond to the
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0202 Printed in Great Britain
pharmacological concentrations currently used for the

prevention of preterm delivery (Dodd et al. 2008).

It is well-known that during development of diabetes

b-cells undergo apoptosis, causing impairment of insulin

production and secretion. In this study, we showed that

exposure of both insulin-producing cells and rat islets

to progesterone resulted in caspase activation and DNA

fragmentation, confirming the occurrence of apoptosis.

Moreover, we could show that progesterone at high

micromolar concentrations was able also to decrease the

proliferation rate of insulin-producing cells.

Studies investigating progesterone as a death inducer

using other cell types are controversial. Candolfi et al.

(2005) showed that progesterone is able to antagonise

the apoptosis induced by TNFa in somatotrophs and

lactotrophs. On the other hand, Cheng et al. (2006)

obtained the opposite results using hepatoma HuH-7

cells, indicating that the beneficial or deleterious effects

of this hormone may be tissue-specific. Though the

mechanism of progesterone cytotoxicity is not completely

clarified, the ability of progesterone to induce oxidative

stress has been investigated (Verma & Rana 2008).

In fact, it has been shown that ROS and redox-

dependent mechanisms can affect the process of apoptosis

(Sen 1998). A relationship between ROS and apoptosis is

supported by many experimental findings (Jabs 1999, Wei

et al. 2000), and studies have reported that antioxidants

can suppress or delay apoptosis by acting as scavengers of

ROS in different systems (Zamzami et al. 1995).

We have shown that progesterone caused an augmen-

tation of oxidative species generation in both RINm5F

insulin-producing cells and rat islets, which may be related
Published by Bioscientifica Ltd.
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to the mechanisms by which progesterone exerts its effects

on pancreatic b-cells.

Supporting the idea that antioxidants can suppress

apoptosis induced by progesterone and based on the fact

that pancreatic b-cells are very sensitive to redox changes

(Lenzen 2008), which correlated with their low antiox-

idant enzyme activity (Tiedge et al. 1997), we found that

a-tocopherol, a natural antioxidant, reduced or even

abolished progesterone toxicity in insulin-producing

cells, resulting in both reduced rates of cell death and

small percentages of cells with fragmented DNA. However,

we could show that oestriol, the main oestrogen in

pregnancy (Reyes et al. 2006), was not able to protect

b-cells against progesterone-induced cell death, as

originally proposed. Rather, this hormone alone was able
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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to induce cell death, when used at concentrations up to

25 mM, although it was much less toxic than progesterone.

Furthermore, our results showed that oestriol is able

to slightly enhance the effect of progesterone on

RINm5F cell death.

The oxidative imbalance has been also recognised as

a stimulus for ER stress, which affects the ability of the

cells to properly fold proteins, and plays an important role

in pancreatic b-cell death (Oyadomari & Mori 2004, Wu &

Kaufman 2006, Eizirik & Cnop 2010).

A number of mechanisms have been proposed for

connecting ER stress to apoptotic cell death, including

the direct activation of proteases (Nakagawa et al. 2000,

Momoi 2004), kinases (Ito et al. 2001), transcription factors,

Bcl-2-family proteins and their modulators (Wei et al. 2001,

Scorrano et al. 2003). Therefore, with certain stimuli, the

activation of different signal transduction cascades takes
Published by Bioscientifica Ltd.
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Thapsigargin was used as a positive control for ER stress.
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place in the ER lumen, collectively called the UPR. The UPR,

which initially acts to counteract toxicity, can eventually

trigger cell death if ER dysfunction is severe or prolonged

(Rao et al. 2001). In this perspective, proteins downstream of

all UPR pathways have been identified as having proapopto-

tic functions.Anexample is theproapoptoticproteinCHOP,

which is upregulated by the transcription factor activating

transcription factor 4 (ATF4 or CREB2), and exclusively

responsive to ER stress (Welihinda & Kaufman 1996). CHOP

causes downregulation of the anti-apoptotic mitochondrial

proteinBCL2 (Yoshida et al. 1998), favouring a proapoptotic

pathway involving proteins that promote mitochondrial
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0202 Printed in Great Britain
damage, cytochrome c release and caspase 3 activation

(Matsumoto et al. 1996, Allagnat et al. 2012).

In this scenario, we proposed the hypothesis that

progesterone might trigger ER stress and UPR, thus contribut-

ing to pancreatic b-cell death. Accordingly, we studied the

expression of CHOP and CREB2 in RINm5F cells in response

to progesterone and/or oestriol exposure. Progesterone-

induced CHOP protein expression increased in parallel to

thehormoneconcentrationuptotentimes.Progesteronealso

increased the expression of CREB2 protein. Oestriol alone did

not affect CREB2 expression; however, it slightly enhanced

the upregulatory action of progesterone on RINm5F cells.
Published by Bioscientifica Ltd.
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Activation of caspases observed after incubation of

RINm5F cells with progesterone indicates that the

mechanism of progesterone-induced cell death is by

apoptosis. In this study we showed activation of different

caspases, but particularly of the executioner caspase 3

as well as of the mitochondrial caspase 9, and of the

ER-stress-related caspase 12.

In summary, the presentdata indicate thatprogesterone

induces apoptosis of insulin-producing cells in tissue culture

and primary b-cells in rat pancreatic islets. As progesterone

potently induced ROS formation and the toxic effect was

antagonised by the antioxidant a-tocopherol, it can be

assumed that progesterone acts through a mechanism

dependent on ROS generation, which may trigger ER stress

and ultimately apoptotic cell death. Thus the results of this

study provide new insights into the mechanisms underlying

progesterone-induced death of b-cells, indicating that this

hormone could contribute to development of GD when

used under conditions where its use at pharmacological

doses is recommended.
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